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Motivated by experimental results on the interplay between molecular motors and tau proteins, we extend
lattice-based models of intracellular transport to include a second species of particle which locally influences
the motor-filament attachment rate. We consider various exactly solvable limits of a stochastic multiparticle
model before focusing on the low-motor-density regime. Here, an approximate treatment based on the random-
walk behavior of single motors gives good quantitative agreement with simulation results for the tau depen-
dence of the motor current. Finally, we discuss the possible physiological implications of our results.
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I. INTRODUCTION

Active transport on a microscopic scale is one of the most
important features of living organisms �1�. Transport of this
kind is responsible for the functionality of eucaryotic cells
and ultimately, via contraction of muscle cells, for the mo-
tion of organisms. Unsurprisingly, perturbations of the intra-
cellular transport can lead to pathological conditions; for ex-
ample, the role of molecular motors in sensory defects is
discussed in �2�. Another example is Alzheimer’s disease in
which the breakdown of axonal transport, taking place before
plaque formation can be observed, has been reported for
transgenic mice �3�. In particular, there is experimental evi-
dence that an overexpression of the linker-protein tau may
reduce the tubulin affinity of kinesin motors �4,5�. Therefore
the investigation of the basic mechanisms of intracellular
transport is not merely of theoretical interest.

Studies of molecular motors discuss, e.g., the necessary
prerequisites for the directed stochastic motion of single mo-
tors or the cooperative dynamics of many motor proteins
attached to a single cargo �6–9�. From a theoretical point of
view these cases can be considered as single self-driven par-
ticles. Although the characterization of the individual mo-
tions is of high relevance for many biological and biophysi-
cal systems, often intracellular transport is carried out by
several self-driven particles. Systems of this kind show ge-
neric many-particle behavior �10�. Focusing on the many-
particle features of intracellular transport, it is sufficient to
consider an effective motion for the molecular motors on the
filaments. Molecular motors move generically unidirection-
ally and stepwise �11�. The size of the steps is, in general,
load dependent and given by multiples of the structural unit
length of the filament. Another important feature of the mo-
tor dynamics is its stochastic nature, i.e., binding and unbind-
ing as well as the movements on the filament are random
events which are described by rates.

These properties of the dynamics suggest that intracel-
lular transport can be described by models that are in close
analogy to the asymmetric exclusion process �ASEP�—a
one-dimensional �1D� lattice model for interacting self-
driven particles �12�. Compared to the ASEP, one has to
account for the finite “run length” of molecular motors, i.e.,
the absence of particle conservation on the track. Various
models of this kind have been proposed, see, e.g., �13,14�,
which show particularly interesting many-particle effects on
open lattices. The absorption and desorption of particles
leads to the formation of localized high and low density do-
mains. This modeling approach is very flexible and can be
easily generalized, for example, in order to explain the re-
sults of in vitro experiments �10�. For recent reviews treating
statistical mechanics descriptions of intracellular traffic, see,
e.g., �15–17�.

In the present work we discuss the influence of a second
type of particle which alters the attachment rates of the
self-driven particles in different one-dimensional environ-
ments. The model under investigation aims to reproduce the
generic features of the kinesin dynamics on microtubules for
different concentrations of tau. In addition to shedding light
on this specific biological situation our study contributes to
the understanding of disorder in driven many-particle sys-
tems.

The rest of the paper is organized as follows. In Sec. II we
review the lattice-based model for intracellular transport in-
troduced by Klumpp and Lipowsky �18� and discuss simula-
tion results obtained by generalizing it to include the effect
of tau. Then, to gain further insight, we introduce in Sec. III
a somewhat simplified model which retains the key features
of the problem but is more amenable to analytical treatment;
we also discuss some limits in which this model is exactly
solvable. In Sec. IV we address the biologically important
question of how the mean current and its fluctuations depend
on the concentration of tau. A random-walk treatment for
single motors leads to predictions for the low-motor-density
regime of the multiparticle model which are in good agree-
ment with simulation. Finally, in Sec. V, we conclude by
discussing the possible physiological relevance of our results
and potential generalizations to more realistic models.
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II. FROM BIOLOGY TO SIMULATION

In this section we outline how the complex biological
system of interest can be represented by a lattice-based
model amenable to simulation. Specifically, we build on the
work of Klumpp and Lipowsky �18�, generalizing their
model to include tau proteins and presenting specimen simu-
lation results. This is in the spirit of a now well-established
approach to complex systems whereby one considers simple
models in order to help understand phenomena and mecha-
nisms which may also occur in more realistic situations. In-
deed, we will pursue this approach further in the following
section in which we discuss an even more simplified model
allowing for analytical treatment.

A. Model of Klumpp and Lipowsky

As discussed in the introduction, motor proteins carry out
directed walks �i.e., active transport� on the filaments of the
cytoskeleton. In the context of neuronal transport, we are
particularly interested in the motion of kinesin along axon
microtubules �composed of repeating tubulin subunits� �19�.
The stepwise structure of such movement naturally suggests
using a 1D lattice model with lattice spacing equal to the step
size �11�. We assume that the size of the kinesin molecules is
comparable to this unit lattice spacing; the mutual exclusion
of motors is then imposed by preventing double occupancy
of any one site. An obvious starting point for modeling the
dynamics is the prototypical asymmetric simple exclusion
process in which particles hop to vacant nearest-neighbor
sites with some preferred direction �for a review of this
exactly-solvable model, see �20��. In fact “backward” steps
for kinesin are extremely rare so it suffices to consider the
totally asymmetric version in which particles can only hop in
one direction.

Since kinesin motors typically detach from the microtu-
bule after a certain number of steps �“run length”� and dif-
fuse in the surrounding medium before reattaching, one
needs to extend the standard ASEP picture. A simple choice
is to impose the same lattice structure and exclusion rules off
the filament but allow the molecules to move symmetrically
there. The association onto and dissociation from the track is
governed by explicit rates �typically the dissociation rate is
comparatively small so that a single motor can make many
steps before detaching�.

Klumpp and Lipowsky embed this lattice model in a cy-
lindrical geometry with directed motion along a 1D track
located at the symmetry axis of the cylinder and undirected
motion �diffusion� elsewhere. Of course, this is a consider-
able simplification compared to a real nerve cell which con-
tains a bundle of parallel microtubules. However, it is ex-
pected to reproduce qualitatively the main features of
unidirectional transport �and could readily be computation-
ally extended to the case of several parallel tracks�. Another
important question concerns the boundary conditions at the
ends of the cylinder. In �18� both periodic and open boundary
conditions are considered; in the former case, the current-
density relation is obtained and, in the latter, the phase dia-
gram.

B. Effect of adding tau

In this subsection we generalize the above-described
model of Klumpp and Lipowsky to include the effect of tau
proteins. The interested reader is referred to �21,22� for de-
tails of the structure of tau and its interaction with tubulin.
Here we merely note that tau molecules “decorate” the mi-
crotubule �indeed they are believed to play a role in stabiliz-
ing it� but do not undergo active transport along it. We can
therefore incorporate them in our model by introducing a
second species of particle which is allowed to diffuse in the
bulk and absorb/desorb with certain rates but not to move
along the track itself. Figure 1 summarizes the various pro-
cesses now incorporated in the model. In the present work
we restrict ourselves to periodic boundary conditions. Al-
though one expects that real nerve cells are better described
by open �or half-open� boundary conditions cf. �23�, study-
ing the simpler case of periodic boundary conditions already
gives information about bulk effects. We further justify our
choice by remarking that the finite run lengths of the molecu-
lar motors might be expected to reduce the dependence of
currents on the filament boundary conditions.

To complete our description of the model we must specify
the details of the tau interactions. First we note that tau mol-
ecules are relatively small compared to the motor-cargo com-
plex. Single motor in vitro experiments �5� also indicate that
the presence of tau does not affect the speed of kinesins
along microtubules or their run length �probably because ki-
nesin and tau have different binding sites �22�� but does lead
to a significant reduction in the attachment rate.

In the present simulation model, we therefore neglect
tau-tau and tau-kinesin exclusion effects �i.e., each unit lat-
tice step can contain one or more tau proteins, regardless of
the presence or absence of a kinesin motor�. However, the
crucial point is the effect of tau on the kinesin dynamics. In
vivo experiments �4� are complicated by the fact that many
motors can be attached to a single cargo but also suggest that
one effect of tau is a decrease in the motor attachment rate
�especially for kinesin�. Hence, in the present model, when

FIG. 1. �Color online� Graphical representation �not to scale� of
the key ingredients in the simulation model �after �18� but with the
addition of tau�. The cylindrical geometry can be considered as a
simplified representation of a nerve cell where the track along the
symmetry axis is the axon microtubule. Our simulations are based
on a cubic lattice with periodic boundary conditions �not shown�.
Two-headed kinesin motors �with attached cargoes� diffuse in the
bulk and undergo directed transport along the track. The tau pro-
teins �represented here by small hexagons� also diffuse in the bulk
but do not move along the track.
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one or more tau molecules occupies a site on the track the
rate for absorption of a kinesin is reduced.1

The description above furnishes a model which retains the
key features of the biological system but can be implemented
simply in numerical simulation. In principle, one can try to
match the parameters of the model �lattice spacing, rates,
etc.� to those known from experiments in order to obtain
quantitatively meaningful results. We carried out simulations
using relative values for the kinesin rates based on data for
the case without tau in �13�.2 Specifically an unbound kinesin
could hop to a neighboring empty filament site with rate
0.0083 which was identical to the hop rate between a pair of
empty bulk sites �i.e., the binding probability was one�. The
rate for a forward step on the filament was 0.0099 and the
desorption rate from the filament to each of the four adjacent
unbound lattice sites was 1.7�10−5. The tau molecules were
�arbitrarily� set to diffuse twice as fast as the motors and had
absorption and desorption rates, 0.03 and 2.5�10−6, respec-
tively, which are consistent with data from fluorescence re-
covery after photobleaching �FRAP� experiments �25�. Note
the high affinity of tau for the microtubule which leads to
significant tau coverage on the filament even for low global
densities.

In order to illustrate the possible effect of tau on kinesin
binding and transport, we reduced the kinesin adsorption rate
by a factor of one hundred in the presence of tau. This value
arguably overestimates the impact of tau in real systems. �In
�5� it was shown that the binding rates depend on the ratio
between tau and kinesin concentration; for the highest con-
centration of tau used in that experiment the binding rates
were reduced by a factor of five.� However, we expect a
stronger influence of tau in living cells since the typical run
length of the molecular motors must be shorter than in in
vitro assays due to the bidirectionality of the transport and
the dynamics of the filament.

Figure 2 shows simulation results for the current along the
track versus bound kinesin density for different values of
global tau density. One sees from these results that increasing
the density of tau reduces the height of the maximum and
shifts it to higher kinesin densities. The average current is
reduced for low densities of kinesin but increased for high
densities. Furthermore, the simulation results cannot be re-
produced by a simple mean-field approximation which indi-
cates the significance of correlation effects. Indeed explicit
measurements of the kinesin pair-correlation functions show
the existence of long-range correlations. To explore the tau-
induced effects analytically, in the next section we present
and discuss an even simpler model.

III. MINIMAL MODEL

In order to elucidate the mechanisms leading to the fea-
tures observed in the simulations described above, we now
introduce a simpler model which can be treated analytically
in certain limits. Specifically, instead of the cylindrical ge-
ometry we consider a two-lane system �analogous to the
“two-state approximation” of �18�� with somewhat simplified
effective dynamics for tau.

Note that this is now a stylized “toy” model designed to
yield increased understanding but not quantitative agreement
with experimental results. We further remark that simple
two-lane models have previously been used as crude repre-
sentations of vehicular traffic and are of more general inter-
est in building up our knowledge of nonequilibrium statisti-
cal physics, see, e.g., �26–29�. In the following analysis we
mainly use the language of physics �“lattice sites,” “par-
ticles,” etc.� while keeping in mind the original biological
motivation. The physiological significance of our results will
then be discussed in more detail in Sec. V.

A. Model definition

We consider a two-lane lattice gas model with periodic
boundary conditions, as shown schematically in Fig. 3. Here

1Note that some aspects of our model are similar in spirit to the
discussion of crowding by another molecular species which already
appears in �24�. However, the specifics are rather different—in par-
ticular, in that work, there is exclusion of motors by the “obstacles”
and the obstacles can also be actively unbound by processive
motors.

2The rates are equivalent to probabilities per time step; for com-
parison with real data, normalization of the time scale would then
be achieved by associating the length of each time step with a
physical time unit.
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FIG. 3. Schematic representation of simplified model. The larger
gray circles denote K particles and the smaller black circles are �
particles. Arrows show possible moves with associated rates. The
model has periodic boundary conditions.
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FIG. 2. �Color online� Average current �jb� along the microtu-
bule filament �normalized by the velocity of bound motors vb� as a
function of kinesin density Nmo /L for different tau densities ��.
Note that here for consistency with �18�, the motor density is mea-
sured in number of motors per unit lattice length along the axonal
cylinder—this can trivially be converted to the number per unit
volume using the dimensions of the system �length 1000 lattice
sites, radius 25�. Simulation data is averaged over 50 histories and
approximately 2�106 time steps. Lines are provided as an aid to
the eye.
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the lower lane represents a microtubule �MT� filament and
the upper one the surroundings. The model contains two spe-
cies of particles representing kinesin motors and tau proteins.
We denote the occupation number for ‘‘K particles’’ on the
ith site in the lower or upper lanes by bi or ui, respectively
�where the letters denote “bound” and “unbound” in allusion
to the biological context�. The ‘‘� particles’’ are found only
in the lower lane �see below� with occupation number �i. The
total number of each kind of particle is conserved and a
hardcore interaction prevents more than one of each species
on a given site, i.e., the site occupation numbers can take
only the values 0 or 1. The dynamics of the model �defined
in continuous time� are motivated by the biological picture,
as will be explained below.

We first make some remarks on the behavior of the �
particles. After the discussion of Sec. II the exclusion condi-
tion may seem very unrealistic. However, for the kinesin
transport the relevant question is whether a given location on
the microtubule contains at least one tau molecule �in our
simplified description the number of such molecules is irrel-
evant�. It therefore seems reasonable to reduce the state-
space and consider only “tau-occupied” and “tau-empty”
sites, in other words the presence or absence of an effective
� particle. Similarly, we argue that tau desorption, diffusion
and absorption can be represented by an effective undirected
motion along the track.3 Hence, in our simplified model, the
� particles undergo a symmetric exclusion process �SEP� in
the lower lane. Specifically, a � particle at site i in the lower
lane hops randomly �after an exponentially distributed wait-
ing time� to one of the nearest-neighbor sites i−1 or i+1.
The rate for each of these moves is D� if the destination site
is vacant and zero otherwise. It is clear that the average
occupation number in the steady state �����i� is site inde-
pendent. �Here, as throughout the paper, we use angular
brackets to denote an average over stochastic histories.�

K particles can occupy sites in both the lower lane and
upper lane �corresponding to kinesin motors being bound or
unbound, respectively�. Along the lower lane the dynamics is
given by a totally asymmetric exclusion process with rate p
for rightward hops. Diffusion of motors in the surroundings
of the filament is represented by a symmetric exclusion pro-
cess in the upper lane with rate D. The key feature of the
model �reflecting the underlying biology� is that the coupling
of these two processes depends on the local density of �
particles. Specifically, a K particle in the upper lane hops to
a K-vacant neighboring site in the lower lane with rate �a if
the destination site is not occupied by a � particle and with a
�reduced� rate �̃a if there is a � particle there. In contrast, a K

particle in the lower lane moves to a vacant neighboring site
in the upper lane with rate �d, regardless of the presence or
absence of � particles.

To summarize, our model is defined by the possible
moves �and corresponding rates� listed in Table I.4 Even this
simple model is difficult to treat analytically since the K
particles experience a dynamic disorder due to the interac-
tion with � particles. For reviews of earlier work on disorder
in driven diffusive systems see, e.g., �30,31�. For a disor-
dered asymmetric exclusion process with nonconserving
sites, Evans et al. �32� were able to solve the steady state
exactly in two limits. In a similar spirit, we treat below some
tractable limits of the present model as well as discussing
more qualitatively the general case.

B. Tractable limits

For a fixed density of � particles, the behavior of the
system is characterized by plotting the stationary current
along the lower lane against the density of K particles. In this
subsection we show how this “fundamental diagram” can be
calculated exactly in certain limits and compare the tau-
induced changes with the observations from the more realis-
tic model in Sec. II.

1. Pure case

In the absence of tau �i.e., ��=0�, the model is exactly
solvable as shown by Klumpp and Lipowsky �18�. The
steady state is a product state with site-independent
K-particle densities in lower and upper lanes �b��bi� and
�u��ui�. Since this stationary state has no correlations be-
tween sites, these densities obey the mean-field equation

�d�b�1 − �u� = �a�u�1 − �b� , �1�

which corresponds to the absence of a net current between
the two lanes. Combined with the expression for the �known�
total motor density

3Of course, this simplified representation would be inappropriate
for addressing questions about the distribution and dynamics of the
tau proteins themselves. With respect to properties of the kinesin
transport, the validity of the approach will later be further justified
by the similarities between simulation results from this minimal
model and from the full model of Sec. II.

4Note that we sometimes use the generic �x for statements which
apply separately to all three interlane rates �a, �̃a, and �d.

TABLE I. Table of possible moves.

Move Rate Biological interpretation

��i=1,�i�1=0	→ ��i=0,�i�1=1	 D� Effective diffusion of tau along MT

�bi=1,bi+1=0	→ �bi=0,bi+1=1	 p Directed motion of kinesin along MT

�ui=1,ui�1=0	→ �ui=0,ui�1=1	 D Diffusion of kinesin in surroundings

�bi=1,ui=0	→ �bi=0,ui=1	 �d Detachment of kinesin from MT

��i=0,bi=0,ui=1	→ ��i=0,bi=1,ui=0	 �a Attachment of kinesin in absence of tau

��i=1,bi=0,ui=1	→ ��i=1,bi=1,ui=0	 �̃a Attachment of kinesin in presence of tau
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�K =
�b + �u

2
, �2�

this yields a quadratic equation for �b which can be solved
explicitly. The mean current �j� along the track is then ob-
tained as

�j� = p�b�1 − �b� . �3�

In Fig. 4 we plot �j� / p against the total motor density �K;
note that in the pure case the shape of this “fundamental
diagram” is completely determined by the ratio of absorption
and desorption rates r��d /�a.

2. Fast diffusion of � particles

If the � particles diffuse infinitely fast relative to the
movement of the K particles then there is no possibility for
correlations to build up in the system and the presence of the
� particles merely alters the average absorption rate. Hence
in the limit D�→� �with the other rates all finite�, one ex-
pects that the stationary state is still described by the simple
mean-field theory �i.e., with uncorrelated homogeneous site
densities� with an effective absorption rate given by

�a,eff = �1 − ����a + ���̃a. �4�

This expectation is confirmed by the simulation results
shown in Fig. 4. Notice that the effect of the introduction of
� particles �with �̃a��a� is to shift the position of the maxi-
mum toward higher K-particle densities.

As an aside, we note that the same mean-field solution is
found for any value of D� in the limit of vanishing coupling

between the lanes, �x→0 �i.e., �a→0, �̃a→0, and �d→0�
with the ratios r��d /�a and r̃��d / �̃a constant. In this
limit the time between each lane-changing event tends to
infinity so that after each such event the K-particle density
profiles in the lower and upper lane relax to the spatially
uncorrelated homogeneous case and we again recover the
mean-field result with effective rate given by Eq. �4� �see
again the simulation results in Fig. 4�.

3. Slow diffusion of � particles

Let us now consider the quenched disorder limit, i.e.,
D�→0. In this case, the time between movement of � par-
ticles tends to infinity and between these events the system
relaxes to a quasistationary state with site-dependent densi-
ties of K particles. There is a growing body of literature
discussing lattice gas models with quenched spatial disorder
but analytical progress is difficult even for the usual single-
lane ASEP �see, e.g., �33–37��. For our two-lane model, we
focus here on two limiting cases where the analysis again
becomes relatively straightforward; comparison with simula-
tion is shown in Fig. 5.

First, we consider taking D�→0 followed by �x /D ,
p /D→� while holding the other ratios between rates con-
stant. Here the density profile in the lower lane relaxes rap-
idly to stationarity between each hopping event in the upper
lane. In other words, the profile in the lower lane is that
of a homogeneous ASEP �constant density �b�, whereas
the density in the upper lane is inhomogeneous and deter-
mined by the local absorption and desorption rates. Speci-
fically, there are two distinct unbound densities �u and �̃u
corresponding to the absence and presence of � particles,
respectively. These densities must obey the relations
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FIG. 4. �Color online� Current of K particles �representing kine-
sin motors� along track versus K-particle density. Parameters are
chosen so that the ratios of desorption and absorption rates in the
presence and absence of � particles are given by r��d /�a=0.1 and
r̃��d / �̃a=0.5 respectively. Lines show �i� the exact theoretical
result for the pure case ���=0� and �ii� the simple mean-field result
for the case with ��=0.5. Points denote simulation results from a
system with lattice size L=1000 averaged over 1000 realizations
and 10 000 time steps. Individual cases are �a� pure model with
parameters: ��=0, p=0.2, D=0.5, �d=0.05, and �a=0.5; �b� fast
�-particle diffusion with parameters: ��=0.5, D�=5.0, p=0.2, D
=0.5, �d=0.05, �a=0.5, and �̃a=0.01; �c� case of small absorption/
desorption rates with parameters ��=0.5, D�=0.01, p=2.0, D=5.0,
�d=0.05, �a=0.5, and �̃a=0.01.
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FIG. 5. �Color online� As Fig. 4 but for the quenched disorder
limit D�→0. Lines show theoretical results for �i� infinitely fast
absorption/desorption and movement of K particles on track com-
pared to diffusion of K particles in bulk and �ii� infinitely fast
absorption/desorption and diffusion of K particles in bulk compared
to movement of K particles on track. These two cases correspond to
a homogeneous density profile in the lower and upper lanes respec-
tively. Supporting simulation results are shown for parameter values
�a� ��=0.5, D�=0.01, p=2.0, D=0.01, �d=0.5, �a=5.0, �̃a=0.1
and �b� ��=0.5, D�=0.01, p=0.01, D=5.0, �d=0.5, �a=5.0,
�̃a=0.1.
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r�b�1 − �u� = �u�1 − �b� , �5�

r̃�b�1 − �̃u� = �̃u�1 − �b� , �6�

and the equation for total K-particle density becomes

�K =
1

2
��b + �1 − ����u + ���̃u� . �7�

Substituting Eqs. �5� and �6� into Eq. �7� gives

�K =
1

2

�b +

r�1 − ����b

1 + �r − 1��b
+

r̃���b

1 + �r̃ − 1��b
� . �8�

For fixed �K this is a cubic equation for �b; numerical solu-
tion followed by substitution into Eq. �3� yields a current in
good agreement with simulation.5

Second we consider the case where D�→0 and then
�x / p , D / p→� �again with the other ratios between rates
held constant�. Here the density in the upper lane relaxes to
that of a homogeneous SEP �constant density �u� and the
density in the lower lane is inhomogeneous with two pos-
sible values �b and �̃b given by the local absorption and
desorption rates via

r�b�1 − �u� = �u�1 − �b� , �9�

r̃�̃b�1 − �u� = �u�1 − �̃b� . �10�

These densities must satisfy

�K =
1

2
��1 − ����b + ���̃b + �u� �11�

leading to

�K =
1

2

 �1 − �b

���u

r + �1 − r��b
+

�b
��u

r̃ + �1 − r̃��u

+ �u� . �12�

After solving this cubic equation for �u one can obtain the
two bound densities via Eqs. �9� and �10�. The current along
the lower lane is of order p and its average value can be
calculated by using the probabilities to find a � particle at
either end of a given bond:

�j� = p��1 − ���2�b�1 − �b� + ���1 − ����̃b�1 − �b�

+ �1 − ������b�1 − �̃b� + ����2�̃b�1 − �̃b�� . �13�

Of course, on very long time scales the positions of the
� particles and hence the local densities of K particles
will change. However, the system will rapidly relax to a
new quasistationary state which, on average, has the
same K-particle current �as follows from conservation of
�-particle number�. The prediction of Eq. �13� is again well
supported by simulation even for parameter values, which
for computational efficiency, are still relatively far from the
limiting case �see Fig. 5�.

C. Intermediate parameters

All the limits treated in the previous subsection corre-
spond to cases where in the �quasi�stationary state there are
no correlations between the occupations of different sites
�i.e., they are situations which can be described by forms of
mean-field theory�. However, we emphasize that this is not
expected to be the case for general choices of rates. In this
subsection we present illustrative simulation results for inter-
mediate parameters �see Fig. 6�.

The relative values chosen are inspired by the biological
context although we make no attempt to quantitatively match
our simple model to real data. Specifically, the bulk diffusion
and absorption rate are large compared to the hopping rate on
the track but the desorption rate is small. The presence of �
particles strongly reduces the absorption probability ��̃a

	�a� �5� while the effective diffusion rate for � particles is
rather small. The simulation data shown in Fig. 6 show that,
just as in the limiting cases discussed in IIIB2-IIIB3, there is
a shift in the position of the maximum toward higher
K-particle densities �compared to the pure case�. However,
significantly, there is also a decrease in the height of this
maximum. We remark that a shift in the maximum, a reduc-
tion in its height and significant correlations were all ob-
served in simulations of the more realistic model in Sec. II.

From a theoretical point of view, the shape of the funda-
mental diagram is interesting �in particular, the effect of tau
on the position and height of the maximum�. Physiologically
however, one expects the number of kinesin motors to be
approximately constant, and thus a more relevant question is
the dependence of current on tau concentration at a fixed low
density of motors. Of course, it is possible to analytically
obtain this dependence in the tractable limits discussed
above. For more “realistic” intermediate parameters, a good
approximate description in the low kinesin density regime
can be obtained by considering the random-walk properties
of single motors which is the approach we choose to pursue
in the following section. To simplify the analysis while re-

5Even better agreement would presumably be obtained for D�

smaller relative to D but then longer simulation times would be
required to reach the steady state.
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FIG. 6. �Color online� Current of K particles along track versus
total K-particle density per unit length for ��=0.75, D�=0.01,
p=0.5, D=1.0, �d=0.01, �a=1.0, and �̃a=0.01. Crosses show
simulation results �parameters as in Fig. 4�; lines show analytical
results for the limiting cases of IIIB1-IIIB3.
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taining the most important features we henceforth set D�=0
and �̃a=0.6

IV. TAU-DEPENDENCE OF CURRENT

A. Single-motor properties

In this subsection we show how the properties of a single
motor �or equivalently an ensemble of noninteracting mo-
tors� can be analytically understood through a random-walk
picture. This facilitates an investigation of the effect of tau
on the average velocity and diffusion constant of the motor
�or equivalently the mean and variance of the current�. Such
a single-particle random-walk approach �cf. �13,38,39�� is
relevant for in vitro experiments involving individual motors
but, as we shall see in Sec. IV B, also gives valuable infor-
mation about the low-motor-density limit of the interacting-
motor problem.

1. Probability distributions: Large deviations

Let us start by considering a single motor, represented by
a K particle, moving in the quenched disordered landscape
defined by Fig. 3 with D�=0 and �̃a=0. We are interested in
the distribution of the total number of steps Y1�t� made by a
single motor in the lower lane over some time period �0, t�
�i.e., the integrated current in time t�. Now it is obvious that,
if the motor spends a fraction x of its time in the lower lane,
then Y1 has a Poisson distribution with mean pxt, i.e.,

Px�Y1,t� =
e−pxt�pxt�Y1

Y1!
�14�

or equivalently the observed time-averaged current y1
�Y1 / t has the distribution

Px�y1,t� =
e−pxt�pxt�y1t

�y1t�!
. �15�

The full distribution of y1 is then obtained by averaging over
all possible values of x, i.e.,

P�y1,t� = �
0

1

Px�y1,t�P�x,t�dx , �16�

where P�x , t� is the distribution of the fraction of time �from
a total t� spent in the lower lane. Our central task is thus to
calculate this distribution and hence obtain the distribution of
y1. We note that P�y1 , t� is expected to have a large deviation
form

P�y1,t�  e−tê�y1� �17�

and that knowledge of the large deviation function ê�y1�
gives the asymptotic behavior of all moments of the distri-
bution.

Before showing how to obtain P�x , t� approximately in
the disordered case, we first digress to discuss the pure result

corresponding to ��=0. In this case, the upper and lower
lanes form an effective two-state Markovian system with
rates �a and �d for transitions between the states. It can then
be shown exactly that the distribution of the total fractional
time in the lower �bound� state is given by �40�

P�x,t� = 
�1 − x�e−��a+�d�Pu
0t + ��a + �d�Pu

0t

��I0�X� +� xPb
0

�1 − x�Pu
0 I1�X��e−�xPu

0+�1−x�Pb
0���a+�d�t,

�18�

where 
 is the Dirac delta function, I0 and I1 are Bessel
functions, Pb

0 and Pu
0 are the probabilities to find the motor in

the bound and unbound states, respectively, and

X � 2��a + �d�t�Pb
0Pu

0x�1 − x� . �19�

Furthermore, it is trivial to show that

Pb
0 =

�a

�a + �d
, Pu

0 =
�d

�a + �d
. �20�

Expression �18� can then be substituted into Eq. �16� and
numerical evaluation of the resulting integral agrees with the
current distribution obtained by simulation �not shown�. In
the long-time limit �18� reduces to a Gaussian �41�.

2. Disordered model as trapping problem

In the disordered case �nonzero density of tau� the upper
and lower lanes no longer form an effective two-state Mar-
kovian system �the average rate for escape from the upper
lane is dependent on the occupation time, since for longer
times the motor is more likely to be found trapped in long
tau-decorated regions�. However, for a two-state non-
Markovian system, it can be shown �42� that the asymptotic
distribution of occupation times is still Gaussian with the
fraction x of time in the lower lane having mean

Pb =
�tb�

�tb� + �tu�
, �21�

and variance given by � / t, where

� =
�u

2�tb�2 + �b
2�tu�2

��tb� + �tu��3 . �22�

Here �tu� ��tb�� and �u
2 ��b

2� are the mean and variance of the
sojourn time distribution in the upper �lower� lane. Since the
rate for exiting the lower lane is always �d, we have

�tb� =
1

�d
, �b

2 =
1

�d
2 , �23�

and the only remaining difficulty is to calculate the equiva-
lent quantities for a sojourn in the upper lane. Obviously,
�tu�, �tu

2�, and hence Pb and � are functions of �� but for
simplicity we suppress this dependence notationally.

Now, focusing in on the upper lane, we see that a K
particle performs an ordinary random walk �with hopping
rate D� in regions of sites occupied by � particles. When
it reaches a site without a � particle, it has a probability

6We can appeal to physical intuition and simulation results �cf.
Figs. 5 and 6� to support the assertion that, with respect to the
current of K particles, there is no singular behavior at this limit.
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A=�a / �2D+�a� to be “trapped” and move to the lower
lane. For several decades such one-dimensional trapping
problems have been extensively analyzed in the literature
�see, e.g., �43–45� and references therein�. In particular
it can be shown �see, e.g., �46�� that the tail of the sojourn
time distribution has a stretched exponential form P�tu�
exp�−a�ln�1 /����2/3tu

1/3	 due to the survival of particles in
arbitrarily large trap-free regions. However, we are interested
in the mean and variance which are not much influenced by
the tail of the distribution. Here we show how, within certain
approximations, these quantities can be calculated directly.
Our approach is in the spirit of a continuous time version of
the method given in �47�.

First we consider two traps separated by a “line segment”
of length N as shown in Fig. 7. In other words, we have a
�-particle free site at l=0 followed by N−1 sites occupied by
� particles, followed by another �-particle free site at l=N.
The time to reach one of the traps at either end starting from
position l is a random variable Tl�N�; it can be shown by
standard arguments �48� that its mean is given by

�Tl�N�� =
�N − l�l

2D
. �24�

Note that this expression is invariant under the transforma-
tion l↔N− l as expected from the symmetric nature of the
diffusion. We now make the important assumption that the
distribution of entry points into the upper lane has a uniform
distribution. This is expected to be a good approximation
when the typical run length in the lower lane is large com-
pared to the spacing of traps, i.e., when

p

�d


1

1 − ��

. �25�

Using T�N�, without subscript, to denote the time to absorp-
tion from a random initial position, we then obtain

�T�N�� =
1

N
�
l=1

N−1

�Tl�N�� �26�

=
N2 − 1

12D
. �27�

Following �48�, one can also write down expressions �see the
Appendix� for the mean square first passage times �Tl�N�2�
and �T�N�2���1 /N��l=1

N−1�Tl�N�2�. Combined with a known
distribution of traps �i.e., the distribution of lengths N�, this
is sufficient to obtain explicit expressions for the first two

sojourn time moments in the case where the trapping prob-
ability A is unity �i.e., �a→��. However, for imperfect trap-
ping one must allow for the possibility that the K particle is
not absorbed on its first visit to the trap. We now discuss two
possible approximations which allow further analytical
progress:

�1� In the “reflecting trap” or “decoupled-ring approxima-
tion” �43,49� it is assumed that a particle which is not ab-
sorbed by a trap is always reflected back into the same trap-
free line segment from which it came.7 This simplifies the
analysis by decoupling the line segments between traps but
at the expense of introducing an uncontrolled approximation.
The approach is clearly exact in the case of perfect traps �i.e.,
in our model for �a→�� but has also been shown to give
good results for trapping probabilities smaller than unity
�49�.

�2� Another approach is to place each particle which es-
capes from a trap site on to the first site �i.e., l=1� in a line
segment with length N randomly drawn from the distribution
of all possible lengths. Again this approximation is exact for
�a→�. Furthermore, we might also expect it to be exact in
the limit of zero-trapping probability ��a→0� since in this
case each particle explores the full distribution of line seg-
ments.

Whereas the first approximation treats the line segments
as unconnected, the second assumes they are all intercon-
nected, in the sense that a particle can escape from a trap into
any line segment �rather than just neighboring segments as
happens in reality�. For intermediate trapping probabilities,
we might expect the true distribution of first passage times to
fall somewhere in between the predictions of these two lim-
iting cases. The analytical approach proceeds in a similar
way for both approximations; we give here the details for
approximation 1, indicating only briefly the modifications
necessary for approximation 2.

Let us start by considering a particle which enters the
upper lane at a random position in a line segment of length
N. The total sojourn time spent by the particle in the upper
lane tu�N� is a random variable given by the following sum:

tu�N� = T�N� + �
i=1

m+1

Ttr
�i� + �

i=1

m

T1
�i��Ni� . �28�

Here m is the number of times the particle is reflected from
the trap, T�N� is the time to reach the trap for the first time
�from a random initial position�, Ttr

�i� is the time spent at the
trapping site on the ith visit, and T1

�i��Ni� is the time to return
to the trap after escaping for the ith time. Under approxima-
tion 1, the particle is always reflected back into the same line
segment and Ni=N. Averaging over stochastic histories then
yields

�tu�N��1 = �T�N�� + �m + 1��Ttr� + �m��T1�N�� , �29�

where we have used the independence of the various random
variables in order to factorize the expectation values.

7A particle which enters the upper lane at a trap site is randomly
assigned to the line segment to the left or the right.

DD

A = ωa
2D+ωa

1 2 N − 1

FIG. 7. Schematic of a K particle diffusing on the N−1
�-particle occupied sites between two �-particle free sites �traps�.
This can be considered as a trapping reaction with trapping prob-
ability A=�a / �2D+�a�.
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Noting that the number of reflections has a geometric dis-
tribution given by

P�m� = A�1 − A�m, �30�

we immediately find

�m� =
1 − A

A
. �31�

Furthermore the time spent at the trap is exponentially dis-
tributed with mean

�Ttr� =
1

2D + �a
. �32�

Together with Eqs. �24� and �27�, this allows a complete
determination of �tu�N��1.

Next we note that the probability of a K particle entering
the upper lane in a given line segment �i.e., a sequence of
consecutive sites occupied by � particles� is proportional to
its length. Hence for a uniform distribution of � particles we
should average �tu�N��1 over the distribution

P0�N� = N��
N−1�1 − ���2. �33�

The resulting infinite sum

�tu�1 = �
N=1

�

P0�N��tu�N��1 �34�

contains summands proportional to N���
N with �=1,2 ,3 and

evaluates to

�tu�1 =
��

2D�1 − ���2 +
1 + ��

�a�1 − ���
. �35�

The only difference in approximation 2 is that the lengths Ni
appearing in Eq. �28� are drawn from the distribution P�Ni�
=��

Ni−1�1−���. After averaging over this distribution as well
as the initial distribution one finds

�tu�2 =
��

2D�1 − ���2 +
1

�a�1 − ���
. �36�

In similar fashion one can obtain an expression for
�tu�N�2� from Eq. �28�. The resulting calculations are
straightforward but tedious and are outlined for convenience
in the Appendix. Using approximation 1 one eventually ob-
tains

�tu
2�1 = ��a

2���1 + ���2 + 8D�a���1 − ��
2�

+ 4D2�1 − ���2�1 + 4�� + ��
2�	�2�1 − ���4D2�a

2	−1.

�37�

Results �35� and �37� together with Eqs. �21�–�23� finally
determine the parameters of the asymptotic Gaussian form of
P�x , t�.

3. Results for velocity and diffusion coefficient

After the effort involved in finding the long-time behavior
of P�x , t�, it is comparatively straightforward to evaluate the

integral in Eq. �16�—one simply uses Stirling’s approxima-
tion for the factorials in the Poisson distribution Px�y1 , t� and
then employs a saddle-point treatment. This finally yields the
large deviation function of the observed average current
along the lower lane

ê�y1� = −
y1

2
+ y1 ln

y1

px+
+

�p� − Pb�x+

2�
+

Pb
2

2�
, �38�

where x+ is the positive solution of the quadratic equation

x2 + �p� − Pb�x − y1� = 0. �39�

The large deviation function gives knowledge of all cumu-
lants of Y1. In particular, we easily obtain the mean velocity

v1 � lim
t→�

�Y1�
t

�40�

=pPb, �41�

and diffusion constant

D1 � lim
t→�

�Y1
2� − �Y1�2

t
�42�

=pPb + p2� . �43�

In fact, the latter is simply the expected result for the vari-
ance of a compound process. However, we emphasize that
the large deviation expression �38� also gives complete in-
formation about the asymptotic behavior of higher moments.

Using Eqs. �21� and �22� for the bound-state occupation
probability and its variance, we obtain explicit expressions
for velocity and diffusion. Specifically, the observed average
motor velocity along the lower lane in the presence of a
quenched distribution of � particles is given by �under ap-
proximation 1�

�v1�1 =
p�1 − ���2

�1 − ���2 + � �d

2D
��� + ��d

�a
��1 − ��

2�
. �44�

In Fig. 8 we compare the analytical predictions of both ap-
proximate schemes with simulation results for the mean ve-
locity of a single motor. We find that both approximations
reproduce well the decrease in the average velocity with in-
creasing tau concentration and that, as anticipated, the simu-
lation results lie between the two curves.

Similarly the analytically calculated diffusion constant D1
compares well with simulation, as shown in Fig. 9. In par-
ticular, we see that although the system is relatively robust to
low concentrations of tau, for high concentrations there is a
dramatic increase in the variance which could be physiologi-
cally significant.

In fact, it is perhaps more illuminating to consider the
diffusion constant divided by the square of the velocity as
shown in Fig. 10. This defines a crossover time scale tc
�D1 / �v1�2. For times less than tc, diffusive fluctuations
dominate whereas for larger times the directed motion is
dominant.
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B. Low motor density

The single motor calculations of the previous subsection
can be used to give approximate results for the low-motor-
density limit of the full model. The key observation is that,
for realistic parameters, the total unbound density is much
smaller than the total bound density �except for �� very close
to unity�. It is thus reasonable to neglect the exclusion inter-
action both in the upper lane and also for interlane moves. In
other words we have an asymmetric exclusion process on the
filament coupled to random walks �without exclusion� in the
surroundings.

In this approximation one then assumes a homogeneous
bound density given by

�b = 2�K � Pb. �45�

In other words a proportion Pb of the total K particles are
expected to be in the lower lane �where Pb is the bound-state
occupation probability calculated for the single motor case�.
Assuming no correlations between the bound densities on

neighboring sites, the associated mean particle current is
given by

�j� = 2p�KPb�1 − 2�KPb� . �46�

As seen in Fig. 11, this approach is a considerable improve-
ment over the simple mean-field �i.e., neglecting all correla-
tions and simply replacing �a by the effective absorption rate
given by Eq. �4�� since it implicitly takes account of corre-
lations between tau and unbound motor density. However, it
still assumes an uncorrelated uniform density of bound mo-
tors �only expected to be a good approximation when many
hops along the filament take place between absorption or
desorption events�. To test this assumption we plot, in Fig.
12, averaged density profiles for the rate parameters used in
Fig. 11 with ��=0.9. In fact there is significant spatial depen-
dence in the bound density but the relative variation is much
less than in the unbound density �where we find peaks cor-
responding to the trapping of motors in tau-occupied re-
gions�. As a quantitative comparison we remark that for the
scenario shown in Fig. 12 the standard deviation of the
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FIG. 10. �Color online� Crossover time scale tc�D1 / �v1�2 for
parameter values p=0.5, D=1.0, �a=1.0, and �d=0.01. Parameters
as in Fig. 8. Note logarithmic scale.
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FIG. 11. �Color online� Comparison of analytical and simulation
results for mean current of K particles along the lower-lane �micro-
tubule� versus concentration of tau. Motor density is fixed at �K

=0.1 and hopping rates are p=0.5, D=1.0, �a=1.0, and �d=0.01.
Simulation results are for a system of size L=1000 with a fixed
realization of disorder for each density value; averages are taken
over 10 000 time steps and 100 histories.
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FIG. 8. �Color online� Comparison of analytical and simulation
results for the dependence of single motor velocity �along microtu-
bule� on concentration of tau. Parameter values are p=0.5, D=1.0,
�a=1.0, and �d=0.01. Simulation results are for a system of size
L=10 000 with a fixed realization of disorder for each density
value; averages are taken over 100 000 time steps and 10 000
histories.
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FIG. 9. �Color online� Comparison of analytical and simulation
results for the dependence of single motor diffusion constant �along
microtubule� on concentration of tau. Parameters as in Fig. 8.
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lower-lane densities is approximately 0.14 of their mean
�over 1000 lattice sites� whereas the equivalent ratio for the
upper lane is about 0.84. For larger p the run length of the
molecular motors increases relative to the trap spacing so
that the bound density becomes much more homogeneous
while the unbound density is essentially unchanged �not
shown�.

Based on the single motor results we also expect high
concentrations of tau to significantly increase the variance of
the bound K-particle current. Indeed, this is observed in
simulations as shown in Fig. 13. For low �-particle densities
we see a plateau where the variance is dominated by that of
the ordinary single-lane exclusion process, which can be cal-
culated exactly �12,50�. At a high tau concentration, a peak
appears resulting from the interlane fluctuations �just as in
the single motor case�. It seems difficult to obtain the shape
of this peak analytically since fluctuations along the lower
lane and fluctuations between the lanes are not independent.

V. DISCUSSION

This work is concerned with the stochastic modeling of
molecular-motor traffic inside cells. In particular, we were

motivated by experimental observations of the influence of
the linker protein tau on transport in axons �4,5�. These ex-
periments suggest that the primary effect of tau proteins is to
reduce significantly the binding affinity of the motor proteins
rather than to alter their dynamics on the microtubules.

In order to model this situation, we extended an earlier
lattice-based approach due to Klumpp and Lipowsky �18�.
Specifically, whereas the original model contained only a
single species of particles �representing kinesin motors�, we
introduced a second type of particle to represent the tau pro-
teins. Following Klumpp and Lipowsky we modeled the
axon in a simplified fashion using a one-dimensional track
embedded in a cylindrical geometry. The dynamics of the
model was defined to reflect the picture suggested by experi-
ment so that the local presence of tau reduces the rate for
kinesin particles to attach at a potential binding site but does
not affect the rates for movement along the track.

Simulation results for this model show that for a wide
range of parameters, the presence of tau causes only a mar-
ginal reduction in the maximum transport along the axonal
filament. �This finding is consistent with the very recent re-
sults of �51�.� However the position of the maximum is
shifted to higher kinesin densities and for a given density of
motor proteins one may observe a vigorous alteration of the
flow. This result indicates that an overexpression of tau pro-
teins may perturb the intracellular transport significantly. The
central aim of the present work was to characterize and un-
derstand this disruption within simple models and thus gain
tentative insight into possible mechanisms in the real bio-
logical context. �We have not attempted to make quantitative
predictions and further work would be needed to determine
to what extent our observations are seen in real physiological
conditions.�

In this spirit, in order to analyze in more detail the origin
of the transport disruption we further simplified the modeling
approach by introducing a two-lane model, which is analyti-
cally treatable for selected, but generical, limiting cases. For
the case of the pure model, i.e., the case without � particles,
it is known that the stationary distribution is given by a prod-
uct measure �18�. However, with the introduction of � par-
ticles, mean-field properties are only found in certain limits.
For example, the case of fast diffusion of � particles can be
described by introducing effective binding rates for kinesin.

A qualitatively different behavior is observed if we con-
sider slow diffusion of � particles. This corresponds to
quenched disorder on the track leading to nontrivial density
profiles of the K particles which represent the motors. For
arbitrary model parameters this limit is difficult to analyze.
However, there are two limiting choices of motor rates which
still yield a product measure for the motor distribution—
these choices correspond to a space-dependent distribution of
particles in one lane and a homogeneous distribution in the
other. In these cases one observes that the position of the
maximal current can be significantly changed by the � par-
ticles. A shift of the maximum to higher K-particle densities
�for fixed �-particle densities� is also a feature of simulation
results for more general parameters. However, when correla-
tions cannot be neglected one also sees a decrease in the
height of the maximum. In these respects the simplified two-
lane model reproduces to a large extent the properties of the
full model.
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FIG. 12. �Color online� Site-dependent motor densities �bi� and
�ui� in lower and upper lanes of the system studied in Fig. 11 with
��=0.9. The data is again averaged over 1000 histories with a fixed
realization of disorder; lines are provided as an aid to the eye.
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In the context of the biological system, it is instructive to
analyze the features of the model for a fixed density of motor
proteins and different concentrations of tau proteins. Within
the two-lane setup we were able to obtain analytical results
for the random-walk behavior of a single K particle moving
among a fixed background of � particles. This approach also
gives approximate information about the low-motor-density
limit of the simplified model. The calculations and support-
ing simulations demonstrate that for a wide range of
�-particle densities �with fixed motor density�, the current on
the filament remains unchanged. At high tau concentrations,
however, one observes a drastic decrease in the system’s ca-
pacity in a rather small interval of �-particle densities. In
addition, the fluctuations of the current show a pronounced
maximum, such that the crossover times, which characterize
the transition from diffusive to directed motion diverge.

It should be emphasized that these results were obtained
in the context of a simplified “toy” model and caution must
be applied in drawing conclusions about real physiological
systems. This is particularly true because we assumed
throughout a strong reduction in the kinesin binding-rates
compared to the experimentally observed values �although
this would be partly compensated by shorter run lengths in
bidirectional transport�. With this caveat in mind, the model
results do indicate one possible mechanism for tau-induced
transport disruption in neural diseases. On one hand, the ro-
bustness of the transport capacity for a wide range of
�-particle densities indicates that the system is stable against
small fluctuations of the tau concentration. Bearing in mind
that tau proteins stabilize the network of microtubule fila-
ments, it is expected that the transport capacities of nerve
cells are only marginally influenced by the tau concentration
for nonpathological conditions. On the other hand, for
low motor densities, a more extreme overexpression of tau
can drastically reduce the transport properties of the cell and
may trigger a cascade of events leading to a loss of
functionality—see, e.g., �52� for alternative mechanisms of
such cascades.

To conclude, we have presented a model approach to in-
tracellular transport, which supports the possible importance
of tau proteins for neural diseases. In future work the present
approach should be extended, e.g., the structure of the nerve
cell should be described in more detail, in order to obtain a
more quantitative description of the relevant processes.
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APPENDIX: MEAN-SQUARE SOJOURN TIME
IN UNBOUND STATE

Here we summarize the intermediate steps leading to re-
sult �37� for the mean-square sojourn time in the upper lane.

Starting from Eq. �28� one obtains �under approxima-
tion 1�

�tu�N�2�1 = �T�N�2� + �m + 1��Ttr
2� + �m�m + 1���Ttr�2

+ �m��T1�N�2� + �m�m − 1���T1�N��2

+ 2�m + 1��T�N���Ttr� + 2�m��T�N���T1�N��

+ 2�m�m + 1���T1�N���Ttr� . �A1�

In addition to quantities already introduced, we need the fol-
lowing averages:

�m2� =
2 − 3A + A2

A2 , �A2�

�Ttr
2� =

2

�2D + �a�2 , �A3�

�Tl�N�2� =
l�N − l��N2 + 1 + l�N − l��

12D2 , �A4�

�T�N�2� =
N4 − 1

60D2 �A5�

�with the latter two obtained following �48��. Finally, aver-
aging over the distribution P0�N� of line-segment lengths
yields

�tu
2�2 = �

N=1

�

P0�N��tu�N�2�1 �A6�

=��a
2���1 + ���2 + 8D�a���1 − ��

2�

+ 4D2�1 − ���2�1 + 4�� + ��
2�	�2�1 − ���4D2�a

2	−1. �A7�

The analogous calculation under approximation 2 gives in-
stead

�tu
2�2 = ��a

2���1 + ���2 + 4D�a���1 − ���

+ 4D2�1 − ���2	�2�1 − ���4D2�a
2	−1. �A8�
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